Conserved and species-specific oxylipin pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis and the invasive Gracilaria vermiculophylla

非侵入性红藻 Gracilaria chilensis 和入侵性 Gracilaria vermiculophylla 的伤口激活化学防御中保守且物种特异性的氧化脂质途径

阅读:5
作者:Martin Rempt, Florian Weinberger, Katharina Grosser, Georg Pohnert

Abstract

Chemical defense of the invasive red alga Gracilaria vermiculophylla has been studied and compared to that of the noninvasive but related Gracilaria chilensis. Both species rely on a wound-activated chemical defense that makes them less attractive to the herbivorous sea snail Echinolittorina peruviana. The chemical stress response of both species was monitored by LC-ESIMS-based metabolic profiling and revealed commonalities and differences. Both algae rely on a rapid lipoxygenase mediated transformation of arachidonic acid to known and novel oxylipins. Common products are 7,8-dihydroxyeicosatetraenoic acid and a novel eicosanoid with an unusual γ-lactone moiety. Several prostaglandins were predominantly formed by the invasive species. The role of some of these metabolites was investigated by surveying the attachment of E. peruviana on artificial food containing the respective oxylipins. Both algae species are defended against this general herbivore by 7,8-dihydroxyeicosatetraenoic acid, whereas the prostaglandins and the novel oxylipins were inactive at naturally occurring concentrations. The role of different oxylipins in the invasive potential of Gracilaria spp. is discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。