Established Immortalized Cavernous Endothelial Cells Improve Erectile Dysfunction in Rats with Cavernous Nerve Injury

建立永生化海绵体内皮细胞可改善海绵体神经损伤大鼠的勃起功能障碍

阅读:9
作者:Sang Hong Bak, Jae Heon Kim, Seung U Kim, Dong-Seok Lee, Yun Seob Song, Hong J Lee

Abstract

The main cause of erectile dysfunction (ED) is the damage in penile cavernous endothelial cells (EC). Murine primary ECs have a limited growth potential, and the easy availability of murine ECs will facilitate the study of cavernous endothelial dysfunction in rats. This study was performed to establish immortalized rat penile cavernous ECs (rEC) and investigate how they could repair erectile dysfunction in rats with cavernous nerve injury (CNI). rEC was isolated enzymatically by collagenase digestion and were cultured. An amphotropic replication-incompetent retroviral vector encoding v-myc oncogene was used to transfect rEC for immortalization (vREC). Morphological and immunohistochemical properties of vREC were examined. Eight-week-old male Sprague-Dawley rats were divided into three groups of five rats each, including group 1 = sham operation, group 2 = bilateral CN injury, group 3 = vREC (1 × 106 cells) treatment after CNI. Erectile response was assessed at 2, 4 weeks after transplantation of vREC., Penile tissue were harvested at 4 weeks after transplantation and immune−histochemical examination was performed. vREC showed the expression of CD31, vWF, cell type-specific markers for EC by RT-PCR and flowcytometry. At 2, 4 weeks after transplantation, rats with CNI had significantly lower erectile function than control group (p < 0.05). The group transplanted with vREC showed higher erectile function than the group without vRECs (p < 0.05). vREC was established and repaired erectile dysfunction in rats with CNI. This cell line may be useful for studying mechanisms and drug screening of erectile dysfunction of rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。