Spontaneous CNV in a novel mutant mouse is associated with early VEGF-A-driven angiogenesis and late-stage focal edema, neural cell loss, and dysfunction

新型突变小鼠的自发性 CNV 与早期 VEGF-A 驱动的血管生成和晚期局灶性水肿、神经细胞丢失和功能障碍有关

阅读:5
作者:Norihiro Nagai, Pete Lundh von Leithner, Kanako Izumi-Nagai, Brett Hosking, Bo Chang, Ron Hurd, Peter Adamson, Anthony P Adamis, Richard H Foxton, Yin Shan Ng, David T Shima

Conclusions

The sCNV mouse is a new model for the study of both early and late events associated with choroidal neovascularization. Pharmacological reduction in sCNV with VEGF-A antagonists and an anti-inflammatory strategy suggests the model may be useful for investigating novel targets for treating human ocular neovascular disease.

Methods

The sCNV mouse phenotype was characterized by using fundus photography, fluorescein angiography, confocal scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), ERG, immunostaining, biochemistry, and electron microscopy. A role for VEGF-A signaling in sCNV was investigated by using neutralizing antibodies and a role for macrophages explored by cell-depletion studies.

Purpose

Characterization of a mouse model of spontaneous choroidal neovascularization (sCNV) and its effect on retinal architecture and function.

Results

The sCNV starts between postnatal day 10 and 15 (P10-P15), increasing in number and severity causing RPE disruption and dysfunction. Various morphological methods confirmed the choroidal origin and subretinal position of the angiogenic vessels. At approximately P25, vessels were present in the outer retina with instances of anastomosis of some sCNV lesions with the retinal vasculature. The number of CNV lesions was significantly decreased by systemic blockade of the VEGF-A pathway. Choroidal neovascularization size also was significantly modulated by reducing the number of lesion-associated macrophages. Later stages of sCNV were associated with edema, neuronal loss, and dysfunction. Conclusions: The sCNV mouse is a new model for the study of both early and late events associated with choroidal neovascularization. Pharmacological reduction in sCNV with VEGF-A antagonists and an anti-inflammatory strategy suggests the model may be useful for investigating novel targets for treating human ocular neovascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。