Mimotope peptide modified pompon mum-like magnetic microparticles for precise recognition, capture and biotransformation analysis of rituximab in biological fluids

模拟表位肽修饰绒球状磁性微粒对生物体液中利妥昔单抗的精确识别、捕获和生物转化分析

阅读:4
作者:Jiawen Yang, Aixuan Zhou, Minyi Li, Qiaoxian He, Jingwei Zhou, Jacques Crommen, Wentao Wang, Zhengjin Jiang, Qiqin Wang

Abstract

Due to low immobilized ligand density, limited binding capacity, and severe interference from serum proteins, developing ideal peptide-based biomaterials for precise recognition and in vivo analysis of biopharmaceuticals remains a huge challenge. In this study, mimotope peptide modified pompon mum-like biomimetic magnetic microparticles (MMPs, 3.8 μm) that mimic the specific functionalities of CD20 on malignant B cells were developed for the first time. Benefit from the numerous ligand binding sites (Ni2+) on the pompon mum-like MMPs, these novel materials achieved ≥10 times higher peptide ligand densities (>2300 mg/g) and antibody binding capacities (1380 mg/g) compared to previous reported biomaterials. Leveraging the high specificity of the mimotope peptide, rituximab can be precisely recognized and enriched from cell culture media or serum samples. We also established an LC‒MS/MS method using the MMPs for tracking rituximab biotransformation in patient serum. Intriguingly, deamidation of Asn55 and Asn33, as well as oxidation of Met81 and Met34 were observed at the key complementarity determining regions of rituximab, which could potentially influence antibody function and require careful monitoring. Overall, these versatile biomimetic MMPs demonstrate superior recognition and enrichment capabilities for target antibodies, offering interesting possibilities for biotransformation analysis of biopharmaceuticals in patient serum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。