Fullerenol protects retinal pigment epithelial cells from oxidative stress-induced premature senescence via activating SIRT1

富勒醇通过激活 SIRT1 保护视网膜色素上皮细胞免于氧化应激引起的过早衰老

阅读:5
作者:Chun-Chun Zhuge, Jing-Ying Xu, Jingfa Zhang, Weiye Li, Peng Li, Zongyi Li, Ling Chen, Xiaoqing Liu, Peng Shang, Hua Xu, Yanjun Lu, Fang Wang, Lixia Lu, Guo-Tong Xu

Conclusions

Fullerenol could rescue RPE cells from oxidative stress-induced senescence through its antioxidation activity and the activation of SIRT1. The protective effect of Fol is useful for the development of new strategies to treat oxidative stress-related retinal diseases like AMD.

Methods

A cell premature senescence model was established in both primary RPE cells and ARPE-19 cells by exposure of the cells to pulsed H&sub2;O&sub2; stress for 5 days, and confirmed with senescence-associated β-galactosidase (SA-β-gal) staining. The final concentration of fullerenol (Fol) in the cell culture system was 5 μg/mL. Cellular redox status was determined by the examination of cellular reactive oxygen species (ROS) staining, catalase activity, and the ratio of reduced to oxidized glutathione, respectively. Deoxyribonucleic acid double-strand breaks were determined by quantitative analysis of γH&sub2;AX. Cell cycle analysis was performed with flow cytometry. SIRT1 activity was examined with SIRT1 Assay Kit. SIRT1 overexpression and knockdown in ARPE-19 cells were performed with lentiviral-mediated infection.

Purpose

Oxidative stress-induced retinal pigment epithelium (RPE) senescence is one of the important factors in the pathogenesis of age-related macular degeneration (AMD). This study aimed to develop a new antisenescence-based intervention and clarify its possible molecular mechanism.

Results

Pulsed H&sub2;O&sub2; exposure triggered the acetylation of p53 at lysine 382 (K382) and subsequent increase in its target p21(Waf1/Cip1). It also increased the number of accumulated phospho-γH2AX foci and the level of phosphor-ATM in RPE cells. Fullerenol protected the RPE cells, as it reduced the number of positive SA-β-gal-staining cells, alleviated the depletion of cellular antioxidants, and reduced genomic DNA damage. Its mechanism might involve the activation of deacetylase SIRT1, resulting in decreased levels of acetyl-p53 and p21(Waf1/Cip1). The roles of SIRT1 in protecting cells in response to Fol were further confirmed by applications of SIRT1 activator (resveratrol) and inhibitors (nicotinamide and sirtinol), and through SIRT1 overexpression and knockdown. Conclusions: Fullerenol could rescue RPE cells from oxidative stress-induced senescence through its antioxidation activity and the activation of SIRT1. The protective effect of Fol is useful for the development of new strategies to treat oxidative stress-related retinal diseases like AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。