Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome

改进了从人类肠道微生物组中提取高分子量DNA、进行纳米孔测序和宏基因组组装的方法

阅读:1
作者:Dylan G Maghini ,Eli L Moss ,Summer E Vance ,Ami S Bhatt

Abstract

Short-read metagenomic sequencing and de novo genome assembly of the human gut microbiome can yield draft bacterial genomes without isolation and culture. However, bacterial genomes assembled from short-read sequencing are often fragmented. Furthermore, these metagenome-assembled genomes often exclude repeated genomic elements, such as mobile genetic elements, compromising our understanding of the contribution of these elements to important bacterial phenotypes. Although long-read sequencing has been applied successfully to the assembly of contiguous bacterial isolate genomes, extraction of DNA of sufficient molecular weight, purity and quantity for metagenomic sequencing from stool samples can be challenging. Here, we present a protocol for the extraction of microgram quantities of high-molecular-weight DNA from human stool samples that are suitable for downstream long-read sequencing applications. We also present Lathe ( www.github.com/bhattlab/lathe ), a computational workflow for long-read basecalling, assembly, consensus refinement with long reads or Illumina short reads and genome circularization. Altogether, this protocol can yield high-quality contiguous or circular bacterial genomes from a complex human gut sample in approximately 10 d, with 2 d of hands-on bench and computational effort.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。