Abstract
Cellular models composed of primary neuronal cultures or neuron-like cell lines are commonly used to study neuron cell death and to test the neuroprotective properties of specific compounds. Cellular models are easily accessible, permitting dissection and modulation of signaling pathways involved in neuron death. For example, drug or shRNA delivery is more straightforward since there is no blood-brain barrier to cross. However, since these models have their limitations, any important findings should ultimately be verified with animal models and human samples. Here, we describe two cellular models that can be used as a highly informative and easy to use starting point for testing potential neuroprotective drugs for Parkinson's disease: PC12 cells and sympathetic neuronal cell cultures. We describe in detail the protocols needed to apply these models to study neuroprotection in the context of Parkinson's disease.
