Crizotinib changes the metabolic pattern and inhibits ATP production in A549 non-small cell lung cancer cells

克唑替尼改变代谢模式并抑制 A549 非小细胞肺癌细胞中的 ATP 产生

阅读:4
作者:Sa Ye, Hong-Bin Zhou, Ying Chen, Kai-Qiang Li, Shan-Shan Jiang, Ke Hao

Abstract

Crizotinib, an inhibitor of the hepatocyte growth factor receptor oncogene, has been studied extensively regarding its antitumor and clinically beneficial effects in non-small cell lung cancer (NSCLC). However, crizotinib's effects on cancer cell energy metabolism, which is linked with tumor proliferation and migration, in NSCLC are unclear. Therefore, the present study focused on crizotinib's effect on NSCLC glucose metabolism. Crizotinib's effects on glucose metabolism, proliferation, migration and apoptosis in A549 cells were explored. Several other inhibitors, including 2-DG, rotenone and MG132, were used to define the mechanism of action in further detail. Data showed that crizotinib treatment reduced A549 cell viability, increased glucose consumption and lactate production, while decreased mitochondrial transmembrane potential (Δψm) and ATP production. Crizotinib treatment, combined with rotenone and MG132 treatment, further inhibited ATP production and Δψm and increased reactive oxygen species content. However, crizotinib did not suppress cell proliferation, migration, ATP production, Δψm or mitochondrial-related apoptosis signals further following 2-DG-mediated inhibition of glycolysis. These results indicated that crizotinib induced low mitochondrial function and compensatory high anaerobic metabolism, but failed to maintain sufficient ATP levels. The alternation of metabolic pattern and insufficient ATP supply may serve important roles in the metabolic antitumor mechanism of crizotinib in A549 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。