Toxicological transcriptome of human airway constructs after exposure to indoor air particulate matter: In search of relevant pathways of moisture damage-associated health effects

暴露于室内空气颗粒物后人类呼吸道结构的毒理学转录组:寻找与水分损伤相关的健康影响的相关途径

阅读:4
作者:Maria-Elisa Nordberg, Martin Täubel, Sami Heikkinen, Kaisa Jalkanen, Arto Köliö, Marianne Stranger, Hanna Leppänen, Anne Hyvärinen, Kati Huttunen

Background

Multiple health effects are associated with moisture damage in buildings. Studies explaining these associations and cell-level mechanisms behind the observed health effects are urgently called for. Objectives: We focused on characterizing gene expression in human airway epithelium after exposure to indoor air particulate matter (PM) sampled from houses with and without moisture damage, alongside determination of general toxicological markers.

Discussion

The exposure to PM from index houses activated toxicology -related genes in airway constructs. Differential expression was not consistent among all the index/reference pairs, possibly due to compositional differences of bioactive particles. Our study highlights CYP1A1 and NFKB1 as potential targets in moisture damage -associated cellular responses.

Methods

We performed detailed technical building inspections in 25 residential houses and categorized them based on the detection of moisture damages and the probability of occupant exposure. PM sampling was complemented by microbiological and volatile organic compound assessment. We exposed human airway constructs to three dilutions (1:16, 1:8, 1:4) of collected PM from moisture-damaged (index) and non-moisture-damaged (reference) houses and imaged selected constructs with electron microscopy. We analyzed general toxicological markers and the RNA of exposed constructs was sequenced targeting genes associated with toxicological pathways. We did groupwise comparisons between index and reference houses and pairwise comparisons in matched index/reference houses.

Results

In groupwise comparison, gene Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) was statistically significantly over-expressed in index houses at all dilutions of collected PM and Nuclear Factor Kappa B Subunit 1 (NFKB1) at dilution 1:4 of collected PM. In pairwise index/reference house comparison, several genes related to multiple toxicological pathways were activated, largest expression differences seen for CYP1A1. However, none of the genes was consistently expressed in all the matched pairs, and general toxicological markers did not differentiate index and reference houses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。