Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle

乳酸给药对小鼠骨骼肌线粒体酶活性和单羧酸转运体的影响

阅读:6
作者:Kenya Takahashi, Yu Kitaoka, Yutaka Matsunaga, Hideo Hatta

Abstract

Growing evidence shows that lactate is not merely an intermediate metabolite, but also a potential signaling molecule. However, whether daily lactate administration induces physiological adaptations in skeletal muscle remains to be elucidated. In this study, we first investigated the effects of daily lactate administration (equivalent to 1 g/kg of body weight) for 3 weeks on mitochondrial adaptations in skeletal muscle. We demonstrated that 3-week lactate administration increased mitochondrial enzyme activity (citrate synthase, 3-hydroxyacyl CoA dehydrogenase, and cytochrome c oxidase) in the plantaris muscle, but not in the soleus muscle. MCT1 and MCT4 protein contents were not different after 3-week lactate administration. Next, we examined whether lactate administration enhances training-induced adaptations in skeletal muscle. Lactate administration prior to endurance exercise training (treadmill running, 20 m/min, 60 min/day), which increased blood lactate concentration during exercise, enhanced training-induced mitochondrial enzyme activity in the skeletal muscle after 3 weeks. MCT protein content and blood lactate removal were not different after 3-week lactate administration with exercise training compared to exercise training alone. In a single bout experiment, lactate administration did not change the phosphorylation state of AMPK, ACC, p38 MAPK, and CaMKII in skeletal muscle. Our results suggest that lactate can be a key factor for exercise-induced mitochondrial adaptations, and that the efficacy of high-intensity training is, at least partly, attributed to elevated blood lactate concentration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。