Acrylamide Induces Abnormal mtDNA Expression by Causing Mitochondrial ROS Accumulation, Biogenesis, and Dynamics Disorders

丙烯酰胺引起线粒体 ROS 积累、生物合成和动力学障碍,从而诱导线粒体 DNA 表达异常

阅读:5
作者:Liuqing Yang, Li Dong, Lujia Zhang, Jie Bai, Fang Chen, Yinghua Luo

Abstract

Acrylamide, a well-documented neurotoxicant, is commonly found as a byproduct of the Maillard reaction in carbohydrate-rich foods. Numerous studies have indicated that acrylamide-induced apoptosis accompanied by mitochondrial dysfunction contributes to its neurotoxicity. However, the mechanisms of how acrylamide causes mitochondrial impairment is not well understood. In this study, we observed destroyed redox balance, accumulated mitochondrial reactive oxygen species (ROS), damaged mitochondrial structures, and activated apoptosis in astrocytes following acrylamide treatment. Furthermore, acrylamide decreased the expression of mitochondrial biogenesis- and dynamics-related genes, including PGC-1α, TFAM, Mfn2, and Opa1, and altered the expression of mitochondrial DNA (mtDNA)-encoded mitochondrial respiratory chain complexes, along with the inhibited mitochondrial respiration. Pretreatment with a mitochondrial ROS scavenger mitoquinone dramatically restored the expressions of PGC-1α, TFAM, Mfn2, and Opa1; protected the mitochondrial structure; and decreased acrylamide-induced apoptosis. Further in vivo experiments confirmed that acrylamide decreased the expressions of PGC-1α, TFAM, Mfn2, and Opa1 in rat brain tissues. These results revealed that acrylamide triggered the mitochondrial ROS accumulation to interfere with mitochondrial biogenesis and dynamics, causing mtDNA damage and finally resulting in mitochondrial dysfunction and apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。