Angiopoietin-1 deficiency increases renal capillary rarefaction and tubulointerstitial fibrosis in mice

血管生成素-1缺乏会增加小鼠肾毛细血管稀疏和肾小管间质纤维化

阅读:8
作者:Krishnapriya Loganathan, Ebtisam Salem Said, Emily Winterrowd, Martina Orebrand, Liqun He, Michael Vanlandewijck, Christer Betsholtz, Susan E Quaggin, Marie Jeansson

Abstract

Presence of tubulointerstitial fibrosis is predictive of progressive decline in kidney function, independent of its underlying cause. Injury to the renal microvasculature is a major factor in the progression of fibrosis and identification of factors that regulate endothelium in fibrosis is desirable as they might be candidate targets for treatment of kidney diseases. The current study investigates how loss of Angipoietin-1 (Angpt1), a ligand for endothelial tyrosine-kinase receptor Tek (also called Tie2), affects tubulointerstitial fibrosis and renal microvasculature. Inducible Angpt1 knockout mice were subjected to unilateral ureteral obstruction (UUO) to induce fibrosis, and kidneys were collected at different time points up to 10 days after obstruction. Staining for aSMA showed that Angpt1 deficient kidneys had significantly more fibrosis compared to wildtype mice 3, 6, and 10 days after UUO. Further investigation 3 days after UUO showed a significant increase of Col1a1 and vimentin in Angpt1 deficient mice, as well as increased gene expression of Tgfb1, Col1a1, Fn1, and CD44. Kidney injury molecule 1 (Kim1/Havcr1) was significantly more increased in Angpt1 deficient mice 1 and 3 days after UUO, suggesting a more severe injury early in the fibrotic process in Angpt1 deficient mice. Staining for endomucin showed that capillary rarefaction was evident 3 days after UUO and Angpt1 deficient mice had significantly less capillaries 6 and 10 days after UUO compared to UUO kidneys in wildtype mice. RNA sequencing revealed downregulation of several markers for endothelial cells 3 days after UUO, and that Angpt1 deficient mice had a further downregulation of Emcn, Plvap, Pecam1, Erg, and Tek. Our results suggest that loss of Angpt1 is central in capillary rarefaction and fibrogenesis and propose that manipulations to maintain Angpt1 levels may slow down fibrosis progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。