β-actin mediated H3K27ac changes demonstrate the link between compartment switching and enhancer-dependent transcriptional regulation

β-肌动蛋白介导的 H3K27ac 变化证明了区室转换和增强子依赖性转录调控之间的联系

阅读:3
作者:Syed Raza Mahmood, Nadine Hosny El Said, Kristin C Gunsalus, Piergiorgio Percipalle

Background

Recent work has demonstrated that three-dimensional genome organization is directly affected by changes in the levels of nuclear cytoskeletal proteins such as β-actin. The mechanisms which translate changes in 3D genome structure into changes in transcription, however, are not fully understood. Here, we use a comprehensive genomic analysis of cells lacking nuclear β-actin to investigate the mechanistic links between compartment organization, enhancer activity, and gene expression.

Conclusions

We demonstrate that enhancer-dependent transcriptional regulation plays a crucial role in driving gene expression changes observed upon compartment-switching. Our results also reveal a novel function of nuclear β-actin in regulating enhancer function by influencing H3K27 acetylation levels.

Results

Using HiC-Seq, ATAC-Seq, and RNA-Seq, we first demonstrate that transcriptional and chromatin accessibility changes observed upon β-actin loss are highly enriched in compartment-switching regions. Accessibility changes within compartment switching genes, however, are mainly observed in non-promoter regions which potentially represent distal regulatory elements. Our results also show that β-actin loss induces widespread accumulation of the enhancer-specific epigenetic mark H3K27ac. Using the ABC model of enhancer annotation, we then establish that these epigenetic changes have a direct impact on enhancer activity and underlie transcriptional changes observed upon compartment switching. A complementary analysis of fibroblasts undergoing reprogramming into pluripotent stem cells further confirms that this relationship between compartment switching and enhancer-dependent transcriptional change is not specific to β-actin knockout cells but represents a general mechanism linking compartment-level genome organization to gene expression. Conclusions: We demonstrate that enhancer-dependent transcriptional regulation plays a crucial role in driving gene expression changes observed upon compartment-switching. Our results also reveal a novel function of nuclear β-actin in regulating enhancer function by influencing H3K27 acetylation levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。