A new class of small molecule estrogen receptor-alpha antagonists that overcome anti-estrogen resistance

一类新型小分子雌激素受体-α拮抗剂,可克服抗雌激素耐药性

阅读:5
作者:Yongxian Ma, Anju Preet, York Tomita, Eliseu De Oliveira, Li Zhang, Yumi Ueda, Robert Clarke, Milton Brown, Eliot M Rosen

Abstract

Previous studies indicate that BRCA1 protein binds to estrogen receptor-alpha (ER) and inhibits its activity. Here, we found that BRCA1 over-expression not only inhibits ER activity in anti-estrogen-resistant LCC9 cells but also partially restores their sensitivity to Tamoxifen. To simulate the mechanism of BRCA1 inhibition of ER in the setting of Tamoxifen resistance, we created a three-dimensional model of a BRCA1-binding cavity within the ER/Tamoxifen complex; and we screened a pharmacophore database to identify small molecules that could fit into this cavity. Among the top 40 "hits", six exhibited potent ER inhibitory activity in anti-estrogen-sensitive MCF-7 cells and four of the six exhibited similar activity (IC50 ≤ 1.0 μM) in LCC9 cells. We validated the model by mutation analysis. Two representative compounds (4631-P/1 and 35466-L/1) inhibited ER-dependent cell proliferation in Tamoxifen-resistant cells (LCC9 and LCC2) and partially restored sensitivity to Tamoxifen. The compounds also disrupted the association of BRCA1 with ER. In electrophoretic mobility shift assays, the compounds caused dissociation of ER from a model estrogen response element. Finally, a modified form of compound 35446 (hydrochloride salt) inhibited growth of LCC9 tumor xenografts at non-toxic concentrations. These results identify a novel group of small molecules that can overcome Tamoxifen resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。