Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity

S2-M4 接头偶联的破坏揭示了 N-甲基-d-天冬氨酸受体功能和乙醇敏感性的新亚基特异性贡献

阅读:5
作者:Benjamin A Hughes, John J Woodward

Abstract

The N-methyl-d-aspartate (NMDA) receptor is a glutamatergic ion channel and is a known site of ethanol action. Evidence suggests that ethanol inhibits NMDA receptor activity by reducing channel open probability and mean open time potentially via interaction with specific residues within the transmembrane (M) domains 3 and 4 of GluN subunits. Recent models of NMDAR function demonstrate that extracellular residues near the M domains are key regulators of gating, suggesting that they may contribute to ethanol sensitivity. To test this, we substituted cysteines at key positions in GluN1 and GluN2 M3-S2 and S2-M4 regions previously shown to affect channel open probability and mean open time similar to ethanol treatment. Although crosslinking of these domains was predicted to restrict linker domain movement and occlude ethanol inhibition, only intra-GluN1 M1:M4 linker-crosslinked receptors showed a decrease in ethanol sensitivity. For the converse experiment, we expressed NMDARs with glycine substitutions in the S2-M4 domain of GluN subunits to enhance M4 flexibility and recorded currents in response to ethanol. Glycine substitution in the GluN1 S2-M4 region significantly decreased glutamate potency of GluN1(A804G)/GluN2A receptors, while GluN1(A804G)/GluN2B receptors exhibited no change in glutamate sensitivity. In contrast, GluN1/GluN2B(S811G) receptors showed a 10-fold increase in glutamate potency while GluN1/GluN2A(S810G) receptors showed no change. Surprisingly, while S2-M4 glycine substitutions modulated ethanol sensitivity, this was observed only in receptors that did not display a change in agonist potency. Overall, these results suggest that S2-M4 linkers strongly influence receptor function and modestly impact ethanol efficacy in a subunit- and receptor subtype-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。