Atypical E2f functions are critical for pancreas polyploidization

非典型 E2f 功能对于胰腺多倍体化至关重要

阅读:4
作者:Ramadhan B Matondo, Eva Moreno, Mathilda J M Toussaint, Peter C J Tooten, Saskia C van Essen, Elsbeth A van Liere, Sameh A Youssef, Laura Bongiovanni, Alain de Bruin

Abstract

The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。