Subretinal gene therapy delays vision loss in a Bardet-Biedl Syndrome type 10 mouse model

视网膜下基因治疗可延缓 Bardet-Biedl 综合征 10 型小鼠模型的视力丧失

阅读:5
作者:Ying Hsu, Sajag Bhattarai, Jacob M Thompson, Angela Mahoney, Jacintha Thomas, Sara K Mayer, Poppy Datta, Janelle Garrison, Charles C Searby, Luk H Vandenberghe, Seongjin Seo, Val C Sheffield, Arlene V Drack

Abstract

Blindness in Bardet-Biedl syndrome (BBS) is caused by dysfunction and loss of photoreceptor cells in the retina. BBS10, mutations of which account for approximately 21% of all BBS cases, encodes a chaperonin protein indispensable for the assembly of the BBSome, a cargo adaptor important for ciliary trafficking. The loss of BBSome function in the eye causes a reduced light sensitivity of photoreceptor cells, photoreceptor ciliary malformation, dysfunctional ciliary trafficking, and photoreceptor cell death. Cone photoreceptors lacking BBS10 have congenitally low electrical function in electroretinography. In this study, we performed gene augmentation therapy by injecting a viral construct subretinally to deliver the coding sequence of the mouse Bbs10 gene to treat retinal degeneration in a BBS10 mouse model. Long-term efficacy was assessed by measuring the electrical functions of the retina over time, imaging of the treated regions to visualize cell survival, conducting visually guided swim assays to measure functional vision, and performing retinal histology. We show that subretinal gene therapy slowed photoreceptor cell death and preserved retinal function in treated eyes. Notably, cone photoreceptors regained their electrical function after gene augmentation. Measurement of functional vision showed that subretinal gene therapy provided a significant benefit in delaying vision loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。