Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats

丙泊酚预防大鼠PC12细胞缺氧缺糖后自噬性细胞死亡及脑缺血再灌注损伤

阅读:5
作者:Derong Cui, Li Wang, Aihua Qi, Quanhong Zhou, Xiaoli Zhang, Wei Jiang

Background

Propofol exerts protective effects on neuronal cells, in part through the inhibition of programmed cell death. Autophagic cell death is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. We therefore studied whether propofol could attenuate the formation of autophagosomes, and if so, whether the inhibition of autophagic cell death mediates the neuroprotective effects observed with propofol. Methodology/principal findings: The cell model was established by depriving the cells of oxygen and glucose (OGD) for 6 hours, and the rat model of ischemia was introduced by a transient two-vessel occlusion for 10 minutes. Transmission electron microscopy (TEM) revealed that the formation of autophagosomes and autolysosomes in both neuronal PC12 cells and pyramidal rat hippocampal neurons after respective OGD and ischemia/reperfusion (I/R) insults. A western blot analysis revealed that the autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 (LC3-II), Beclin-1 and class III PI3K, were also increased accordingly, but cytoprotective Bcl-2 protein was decreased. The negative effects of OGD and I/R, including the formation of autophagosomes and autolysosomes, the increase in LC3-II, Beclin-1 and class III PI3K expression and the decline in Bcl-2 production were all inhibited by propofol and specific inhibitors of autophagy, such as 3-methyladenine (3-MA), LY294002 and Bafilomycin A1 (Baf),. Furthermore, in vitro OGD cultures and in vivo I/R rats showed an increase in cell survival following the administration of propofol, as assessed by an MTT assay or histochemical analyses. Conclusions/significance: Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of propofol that benefit the nervous system.

Significance

Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of propofol that benefit the nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。