Polystyrene Nanoparticles Reduced ROS and Inhibited Ferroptosis by Triggering Lysosome Stress and TFEB Nucleus Translocation in a Size-Dependent Manner

聚苯乙烯纳米粒子以尺寸依赖的方式引发溶酶体应激和 TFEB 核易位,从而降低 ROS 并抑制铁死亡

阅读:9
作者:Lin Li, Shili Sun, Lingli Tan, Yuanfang Wang, Luyao Wang, Zhirong Zhang, Ling Zhang

Abstract

Though plastic nanoparticles have already raised much concern for their potential impact on health, our understanding of their biological effects is still utterly limited. Here we demonstrate for the first time that carboxyl-modified polystyrene nanoparticles (CPS) could effectively inhibit ferroptosis as a result of reduced cellular ROS which was triggered by transcription factor EB (TFEB) nucleus translocation. In this process, CPS first entered cells via macropinocytosis, then CPS-containing macropinosomes fused with lysosomes and expanded into abnormal lysosome-like large vacuoles in vacuolar-type H+-ATPase (V-ATPase) and aquaporins (AQPs) in a dependent way. These large vacuoles were detected both in vitro and in vivo, which was found to be a sign of lysosome stress. The lysosome stress induced deactivation of mammalian target of rapamycin (mTOR) which led to nucleus translocation of TFEB. Then, TFEB-dependent enhanced expression of lysosomal proteins and superoxide dismutase (SOD) which ultimately led to ROS reduction and inhibition of ferroptosis. Knockout of TFEB-enhanced ferroptosis was triggered by Erastin and abolished the effect of CPS on ROS and ferroptosis. In summary, our results reveal a novel mechanism whereby CPS reduced ROS and inhibited ferroptosis in a TFEB-dependent way. These findings have important implications for understanding the biological effects of polystyrene nanoparticles and searching for new anti-ROS and antiferroptosis particles or reagents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。