Aversive Training Induces Both Presynaptic and Postsynaptic Suppression in Drosophila

厌恶训练可诱导果蝇的突触前和突触后抑制

阅读:8
作者:Xiaofan Zhang, Nathaniel C Noyes, Jianzhi Zeng, Yulong Li, Ronald L Davis

Abstract

The α'β' subtype of Drosophila mushroom body neurons (MBn) is required for memory acquisition, consolidation and early memory retrieval after aversive olfactory conditioning. However, in vivo functional imaging studies have failed to detect an early forming memory trace in these neurons as reflected by an enhanced G-CaMP signal in response to presentation of the learned odor. Moreover, whether cellular memory traces form early after conditioning in the mushroom body output neurons (MBOn) downstream of the α'β' MBn remains unknown. Here, we show that aversive olfactory conditioning suppresses the calcium responses to the learned odor in both α'3 and α'2 axon segments of α'β' MBn and in the dendrites of α'3 MBOn immediately after conditioning using female flies. Notably, the cellular memory traces in both α'3 MBn and α'3 MBOn are short-lived and persist for <30 min. The suppressed response in α'3 MBn is accompanied by a reduction of acetylcholine (ACh) release, suggesting that the memory trace in postsynaptic α'3 MBOn may simply reflect the suppression in presynaptic α'3 MBn. Furthermore, we show that the α'3 MBn memory trace does not occur from the inhibition of GABAergic neurons via GABAA receptor activation. Because activation of the α'3 MBOn drives approach behavior of adult flies, our results demonstrate that aversive conditioning promotes avoidance behavior through suppression of the α'3 MBn-MBOn circuit.SIGNIFICANCE STATEMENTDrosophila learn to avoid an odor if that odor is repeatedly paired with electric shock. Mushroom body neurons (MBns) are known to be major cell types that mediate this form of aversive conditioning. Here we show that aversive conditioning causes a reduced response to the conditioned odor in an axon branch of one subtype of the MBn for no more than 30 min after conditioning, and in the dendrites of postsynaptic, MB output neurons (MBOns). Because experimenter-induced activation of the MBOn induces approach behavior by the fly, our data support a model that aversive learning promotes avoidance by suppressing the MBn-MBOn synapses that normally promote attraction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。