Shikonin inhibits neuronal apoptosis via regulating endoplasmic reticulum stress in the rat model of double-level chronic cervical cord compression

紫草素通过调节内质网应激抑制大鼠双节段慢性颈髓压迫模型的神经元凋亡

阅读:4
作者:Min Yao, Gan Li, Long-Yun Zhou, Zhong Zheng, Yue-Li Sun, Shu-Fen Liu, Yong-Jun Wang, Xue-Jun Cui

Abstract

Cervical spondylotic myelopathy (CSM) is a clinically symptomatic entity arising from the spinal cord compression by degenerative diseases. Although endoplasmic reticulum (ER) stress has been commonly observed in several neurodegenerative diseases, the relationship between ER stress and CSM remains unknown. Shikonin is known to protect PC12 by inhibiting apoptosis in vitro. This study hypothesised that ER stress was vital in neuronal apoptosis in CSM. Shikonin might inhibit such responses by regulating ER stress through the protein kinase-like ER kinase-eukaryotic translation initiation factor 2 α-subunit-C/EBP homologous protein (PERK-eIF2α-CHOP) signalling pathway. Thus, the aim of this study was evaluating the neuroprotective effect of shikonin in rats with double-level chronic cervical cord compression, as well as primary rat cortical neurons with glutamate-induced neurotoxicity. The result showed that ER stress-related upregulation of PERK-eIF2α-CHOP resulted in rat neuronal apoptosis after chronic cervical cord compression; then, shikonin promoted motor recovery and inhibited neuronal apoptosis by attenuating PERK-eIF2α-CHOP and prevented Bax translocation from cytoplasm to mitochondrion induced by CHOP of neurons in rats with chronic compression. Also, it was found that shikonin could protect rat primary cortical neuron against glutamate toxicity by regulating ER stress through the PERK-eIF2α-CHOP pathway in vitro. In conclusion, shikonin might inhibit neuronal apoptosis by regulating ER stress through attenuating the activation of PERK-eIF2α-CHOP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。