Structure-Based Scaffold Repurposing toward the Discovery of Novel Cholinesterase Inhibitors

基于结构的支架再利用以发现新型胆碱酯酶抑制剂

阅读:7
作者:Satish N Dighe, Mangapathiraju Tippana, Suzannah van Akker, Trudi A Collet

Abstract

Cholinesterases (ChE) are well-known drug targets for the treatment of Alzheimer's disease (AD). In continuation of work to develop novel cholinesterase inhibitors, we utilized a structure-based scaffold repurposing approach and discovered six novel ChE inhibitors from our recently developed DNA gyrase inhibitor library. Among the identified hits, two compounds (denoted 3 and 18) were found to be the most potent inhibitor of acetylcholinesterase (AChE, IC50 = 6.10 ± 1.01 μM) and butyrylcholinesterase (BuChE, IC50 = 5.50 ± 0.007 μM), respectively. Compound 3 was responsible for the formation of H-bond and π-π stacking interactions within the active site of AChE. In contrast, compound 18 was well fitted in the choline-binding pocket and catalytic site of BuChE. Results obtained from in vitro cytotoxicity assays and in silico derived physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties indicate that repurposed scaffold 3 and 18 could be potential drug candidates for further development as novel ChE inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。