Analyzing the influence of kinase inhibitors on DNA repair by differential proteomics of chromatin-interacting proteins and nuclear phospho-proteins

通过染色质相互作用蛋白和核磷酸化蛋白的差异蛋白质组学分析激酶抑制剂对 DNA 修复的影响

阅读:6
作者:Lisa Gleißner, Marcel Kwiatkowski, Laura Myllynen, Pascal Steffen, Cordula Petersen, Kai Rothkamm, Hartmut Schlüter, Malte Kriegs

Abstract

The combination of radiotherapy and pharmacological inhibition of cellular signal transduction pathways offers promising strategies for enhanced cancer cell inactivation. However, the molecular effects of kinase inhibitors especially on DNA damage detection and repair after X-irradiation have to be understood to facilitate the development of efficient and personalized treatment regimens. Therefore, we applied differential proteomics for analyzing inhibitor-induced changes in either chromatin-bound or phosphorylated nuclear proteins. The effect of the multi kinase inhibitor sorafenib on DNA repair, chromatin binding and phosphorylation of nuclear proteins was analyzed in UT-SCC 42B head and neck cancer cells using metabolic labeling based differential proteomics (SILAC). Sorafenib significantly inhibited DNA repair but failed to significantly affect chromatin interactions of 90 quantified proteins. In contrast, analyzing nuclear phospho-proteins following sorafenib treatment, we detected quantitative changes in 9 out of 59 proteins, including DNA-repair proteins. In conclusion, the analysis of nuclear phospho-proteins by differential proteomics is an effective tool for determining the molecular effects of kinase inhibitors on X-irradiated cells. Analyzing chromatin binding might be less promising.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。