Neural stem cell small extracellular vesicle-based delivery of 14-3-3t reduces apoptosis and neuroinflammation following traumatic spinal cord injury by enhancing autophagy by targeting Beclin-1

基于神经干细胞小细胞外囊泡的 14-3-3t 递送可通过靶向 Beclin-1 增强自噬来减少创伤性脊髓损伤后的细胞凋亡和神经炎症

阅读:6
作者:Yuluo Rong, Wei Liu, Chengtang Lv, Jiaxing Wang, Yongjun Luo, Dongdong Jiang, Linwei Li, Zheng Zhou, Wei Zhou, Qingqing Li, Guoyong Yin, Lipeng Yu, Jin Fan, Weihua Cai

Abstract

Neural stem cell-derived small extracellular vesicles (NSC-sEVs) play an important role in the repair of tissue damage. Our previous in vitro and in vivo studies found that preconditioning with NSC-sEVs promoted the recovery of functional behaviors following spinal cord injury by activating autophagy. However, the underlying mechanisms for such observations remain unclear. In this study, we further explored the mechanisms by which NSC-sEVs repair spinal cord injury via autophagy. We found that NSC-sEVs contain 14-3-3t protein, of which the overexpression or knockdown enhanced and decreased autophagy, respectively. In addition, 14-3-3t overexpression enhanced the anti-apoptotic and anti-inflammatory effects of NSC-sEVs, further promoting functional behavior recovery following spinal cord injury. The overexpression of 14-3-3t was used to further validate the in vivo results through a series of in vitro experiments. Conversely, knockdown of 14-3-3t attenuated the anti-apoptotic and anti-inflammatory effects of NSC-sEVs. Further studies also confirmed that NSC-sEVs increased Beclin-1 expression, with which 14-3-3t interacted and promoted its localization to autophagosome precursors. In this study, we found that NSC-sEVs deliver 14-3-3t, which interacts with Beclin-1 to activate autophagy. Our results indicate that 14-3-3t acts via a newly-discovered mechanism for the activation of autophagy by NSC-sEVs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。