Spatiotemporal cellular movement and fate decisions during first pharyngeal arch morphogenesis

第一咽弓形态发生过程中的时空细胞运动和命运决定

阅读:7
作者:Yuan Yuan, Yong-Hwee Eddie Loh, Xia Han, Jifan Feng, Thach-Vu Ho, Jinzhi He, Junjun Jing, Kimberly Groff, Alan Wu, Yang Chai

Abstract

Cranial neural crest (CNC) cells contribute to different cell types during embryonic development. It is unknown whether postmigratory CNC cells undergo dynamic cellular movement and how the process of cell fate decision occurs within the first pharyngeal arch (FPA). Our investigations demonstrate notable heterogeneity within the CNC cells, refine the patterning domains, and identify progenitor cells within the FPA. These progenitor cells undergo fate bifurcation that separates them into common progenitors and mesenchymal cells, which are characterized by Cdk1 and Spry2/Notch2 expression, respectively. The common progenitors undergo further bifurcations to restrict them into osteogenic/odontogenic and chondrogenic/fibroblast lineages. Disruption of a patterning domain leads to specific mandible and tooth defects, validating the binary cell fate restriction process. Different from the compartment model of mandibular morphogenesis, our data redefine heterogeneous cellular domains within the FPA, reveal dynamic cellular movement in time, and describe a sequential series of binary cell fate decision-making process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。