Abstract
X-ray repair cross-complementing group 1 (XRCC1) is a major DNA repair gene that is responsible for fixing DNA base damage and single-strand breaks by interacting with DNA components at the damage site. This study explored the clinical significance of XRCC1 in human clear cell renal cell carcinoma (ccRCC) and further examined the mechanism of the role of XRCC1 in ccRCC. The clinical relevance of XRCC1 in ccRCC was evaluated using tissue microarrays and immunohistochemical staining of two independent human ccRCC cohorts. Our data demonstrated that XRCC1 expression was dramatically decreased in ccRCC tissues compared with that in normal renal tissues and paired adjacent non-tumor tissues. Low XRCC1 expression was significantly correlated with lymph node metastasis and with worse overall and disease-specific survival in patients, as determined by log-rank tests. However, Cox regression analysis revealed that XRCC1 expression was not an independent prognostic factor in ccRCC patients. Furthermore, XRCC1 suppressed ccRCC migration and invasion by inhibiting MMP-2 and MMP-9 expression through the regulation of TIMP-2 and TIMP-1. These findings indicated that decreased XRCC1 expression was associated with lymph node metastasis but was not an independent prognostic factor in ccRCC patients. XRCC1 may serve as a potential therapeutic target for inhibiting ccRCC metastasis but cannot be used as an independent prognostic factor.
