Targeting mitochondrial respiration selectively sensitizes pediatric acute lymphoblastic leukemia cell lines and patient samples to standard chemotherapy

针对线粒体呼吸选择性地使儿童急性淋巴细胞白血病细胞系和患者样本对标准化疗敏感

阅读:5
作者:Xuedong Fu, Wei Liu, Qian Huang, Yanjun Wang, Huijuan Li, Ying Xiong

Abstract

The clinical management of pediatric acute lymphoblastic leukemia (ALL) is still changeling and identification of agents that can sensitize standard chemotherapy is needed for its better management. In this work, we demonstrate that tigecycline, a FDA-approved antibiotic, is an attractive candidate for ALL treatment. Tigecycline inhibits growth and induces apoptosis of multiple ALL cell lines. Compared to normal hematopoietic cells, tigecycline is more active against primary lymphocytes and CD34 progenitors from ALL patients through decreasing survival and clonogenic growth. Notably, tigecycline significantly augments the efficacy of chemotherapeutic drugs, such as doxorubicin and vincristine, in ALL cell lines, primary samples and xenograft mouse model. Tigecycline acts on ALL via inhibiting mitochondrial respiration, leading to energy crisis and oxidative stress and damage. We show that the enhanced mitochondrial biogenesis and increased oxygen consumption rate in ALL versus normal hematopoietic cells are important for their different sensitivity to tigecycline. We further show that ATP production and growth rate are largely affected in mitochondrial respiration-deficient ρ0 ALL cells. Our work provides pre-clinical evidence for repurposing tigecycline for ALL treatment and highlights the therapeutic value of targeting mitochondrial metabolism in sensitizing ALL to chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。