The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip

利用微流控芯片研究共培养条件下膀胱癌细胞的能量代谢

阅读:5
作者:Xiao-Dong Xu, Shi-Xiu Shao, Yan-Wei Cao, Xue-Cheng Yang, Hao-Qing Shi, You-Lin Wang, Sen-Yao Xue, Xin-Sheng Wang, Hai-Tao Niu

Conclusions

The energy metabolism of bladder tumor cells does not parallel the "Warburg effect" because even under sufficient oxygen conditions, cancer cells still undergo glycolysis. Bladder cancer cells also have an efficient oxidative phosphorylation process wherein cancer cells promote glycolysis in adjacent interstitial cells, thereby causing increased formation of nutritional precursors. These high-energy metabolites are transferred to adjacent tumor cells in a specified direction and enter the Krebs Cycle. Ultimately, oxidative phosphorylation increases, and sufficient ATP is produced.

Methods

In this study, we utilized the following techniques to achieve the objectives: (1) a co-culture system of bladder tumor cells and fibroblasts was built using a microfluidic chip as a three-dimensional culture system; (2) the concentration of lactic acid in the medium from the different groups was determined using an automatic micro-plate reader; (3) a qualitative analysis of mitochondria-related protein expression was performed by immunofluorescent staining; and (4) a quantitative analysis of mitochondrial-associated protein expression was conducted via Western blot. SPSS software was utilized to analyze the data.

Results

(1) Determination of lactic acid concentration: The lactic acid concentration was determined to be highest in the experimental group, followed by the T24 cell control group and then the fibroblast control group. (2) Qualitative results: In the control group, the mitochondrial-related protein fluorescence intensity was higher in the fibroblasts compared with the cancer cells, and the fluorescence intensity of the fibroblasts was reduced compared with the experimental group. The mitochondrial-related protein fluorescence intensity of the cancer cells was higher in the experimental group compared with the control group, and the opposite results were obtained with the fibroblasts. (3) Quantitative results: The expression of mitochondria-related proteins was higher in fibroblasts compared with cancer cells in the control group, and the opposite results were obtained in the experimental group (P<0.05). The expression of mitochondria-related proteins was increased in cancer cells in the experimental group compared with the control group; the opposite results were observed for the fibroblasts (P<0.05). Conclusions: The energy metabolism of bladder tumor cells does not parallel the "Warburg effect" because even under sufficient oxygen conditions, cancer cells still undergo glycolysis. Bladder cancer cells also have an efficient oxidative phosphorylation process wherein cancer cells promote glycolysis in adjacent interstitial cells, thereby causing increased formation of nutritional precursors. These high-energy metabolites are transferred to adjacent tumor cells in a specified direction and enter the Krebs Cycle. Ultimately, oxidative phosphorylation increases, and sufficient ATP is produced.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。