Ketamine reduces remifentanil-induced postoperative hyperalgesia mediated by CaMKII-NMDAR in the primary somatosensory cerebral cortex region in mice

氯胺酮减轻小鼠初级躯体感觉大脑皮层区域 CaMKII-NMDAR 介导的瑞芬太尼诱发的术后痛觉过敏

阅读:5
作者:Fang Qi, Tianping Liu, Xiaoyu Zhang, Xiaowei Gao, Zigang Li, Ling Chen, Chen Lin, Linlin Wang, Zaijie Jim Wang, Huifang Tang, Zhijun Chen

Abstract

Remifentanil is commonly used clinically for perioperative pain relief, but it may induce postoperative hyperalgesia. Low doses of ketamine have remained a common choice in clinical practice, but the mechanisms of ketamine have not yet been fully elucidated. In this study, we examined the possible effects of ketamine on calcium/calmodulin-dependent protein kinase II α (CaMKIIα) and N-methyl-d-aspartate receptor (NMDAR) subunit NR2B in a mouse model of remifentanil-induced postoperative hyperalgesia (RIPH) in the primary somatosensory cerebral cortex (SI) region. The paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were used to assess mechanical allodynia and thermal hyperalgesia, respectively, before and after intraoperative remifentanil administration. Before surgery, mice received intrathecal injections of the following drugs: ketamine, NMDA, BayK8644 (CaMKII activator), and KN93 (CaMKII inhibitor). Immunofluorescence was performed to determine the anatomical location and expression of activated CaMKIIα, phosphorylated CaMKIIα (p-CaMKIIα). Additionally, western blotting was performed to assess p-CaMKIIα and NMDAR expression levels in the SI region. Remifentanil decreased the PWMT and PWTL at 0.5 h, 2 h, and 5 h and increased p-CaMKIIα expression in the SI region. Ketamine increased the PWMT and PWTL and reversed the p-CaMKIIα upregulation. Both BayK8644 and NMDA reversed the effect of ketamine, decreased the PWMT and PWTL, and upregulated p-CaMKIIα expression. In contrast, KN93 enhanced the effect of ketamine by reducing hyperalgesia and downregulating p-CaMKIIα expression. These results suggested that ketamine reversed RIPH by inhibiting the phosphorylation of CaMKIIα and the NMDA receptor in the SI region in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。