Phospholipid membrane-decorated deep-penetrated nanocatalase relieve tumor hypoxia to enhance chemo-photodynamic therapy

磷脂膜修饰的深穿透纳米过氧化氢酶缓解肿瘤缺氧增强化学光动力疗法

阅读:4
作者:Junjing Yin, Haiqiang Cao, Hong Wang, Kaoxiang Sun, Yaping Li, Zhiwen Zhang

Abstract

Hypoxia is a serious impediment to current treatments of many malignant tumors. Catalase, an antioxidant enzyme, is capable of decomposing endogenous hydrogen peroxide (H2O2) into oxygen for tumor reoxygenation, but suffered from in vivo instability and limited delivery to deep interior hypoxic regions in tumor. Herein, a deep-penetrated nanocatalase-loading DiIC18 (5, DiD) and soravtansine (Cat@PDS) were provided by coating catalase nanoparticles with PEGylated phospholipids membrane, stimulating the structure and function of erythrocytes to relieve tumor hypoxia for enhanced chemo-photodynamic therapy. After intravenous administration, Cat@PDS preferentially accumulated at tumor sites, flexibly penetrated into the interior regions of tumor mass and remarkably relieved the hypoxic status in tumor. Notably, the Cat@PDS + laser treatment produced striking inhibition of tumor growth and resulted in a 97.2% suppression of lung metastasis. Thus, the phospholipids membrane-coated nanocatalase system represents an encouraging nanoplatform to relieve tumor hypoxia and synergize the chemo-photodynamic cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。