Macrophages promote heat stress nephropathy in mice via the C3a-C3aR-TNF pathway

巨噬细胞通过 C3a-C3aR-TNF 通路促进小鼠热应激肾病

阅读:5
作者:Yang Yang, Dongjuan Zhang, Minghui Song, Chao Wang, Jiayi Lv, Jie Zhou, Meihan Chen, Lu Ma, Changlin Mei

Abstract

Heat-stress nephropathy (HSN) is associated with recurrent dehydration. However, the mechanisms underlying HSN remain largely unknown. In this study, we evaluated the role of dehydration in HSN and kidney injury in mice. Firstly, we found that complement was strongly activated in the mice that were exposed to dehydration; and among complement components, the interaction between C3a and its receptor, C3aR, was more closely associated with kidney injury. Then two-month-old mice were intraperitoneally injected with 2% dimethyl sulfoxide (DMSO) or the C3aR inhibitor SB290157 during dehydration. DMSO-treated mice exhibited excessive macrophage infiltration, renal cell apoptosis, and kidney fibrosis. In contrast, SB290157-treated mice had no apparent kidney injury. By fluorescence-activated cell sorting (FACS), we found that SB290157 treatment in mice remarkably inhibited macrophage infiltration and suppressed CCR2 expression in macrophages. In addition, C3a binding to C3aR promoted macrophage polarization toward the M1 phenotype and increased the production of TNF-α, which induced renal tubular epithelial cell (RTEC) apoptosis in vivo and in vitro. Interestingly, C3a treatment failed to directly induce TNF-α production and apoptosis in RTECs. However, TNF-α production in response to C3a treatment was significantly elevated when RTECs were cocultured with macrophages, suggesting that macrophages rather than RTECs are the target of C3a-C3aR interaction. At last, we proved that infusion of macrophages which highly expressed TNF-α would significantly deteriorate HSN in TNF-KO mice when they were exposed to recurrent dehydration. This study uncovers a novel mechanism underlying the pathogenesis of HSN, and a potential pathway to prevent kidney injury during dehydration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。