Transcriptomic analysis of rat brain response to alternating current electrical stimulation: unveiling insights via single-nucleus RNA sequencing

大鼠大脑对交流电刺激反应的转录组分析:通过单核 RNA 测序揭示新见解

阅读:4
作者:Yan Wang, Yongchao Ma, Qiuling Zhong, Bing Song, Qian Liu

Abstract

Electrical brain stimulation (EBS) has gained popularity for laboratory and clinical applications. However, comprehensive characterization of cellular diversity and gene expression changes induced by EBS remains limited, particularly with respect to specific brain regions and stimulation sites. Here, we presented the initial single-nucleus RNA sequencing profiles of rat cortex, hippocampus, and thalamus subjected to intracranial alternating current stimulation (iACS) at 40 Hz. The results demonstrated an increased number of neurons in all three regions in response to iACS. Interestingly, less than 0.1% of host gene expression in neurons was significantly altered by iACS. In addition, we identified Rgs9, a known negative regulator of dopaminergic signaling, as a unique downregulated gene in neurons. Unilateral iACS produced a more focused local effect in attenuating the proportion of Rgs9+ neurons in the ipsilateral compared to bilateral iACS treatment. The results suggested that unilateral iACS at 40 Hz was an efficient approach to increase the number of neurons and downregulate Rgs9 gene expression without affecting other cell types or genes in the brain. Our study presented the direct evidence that EBS could boost cerebral neurogenesis and enhance neuronal sensitization to dopaminergic drugs and agonists, through its downregulatory effect on Rgs9 in neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。