Conclusions
Hypoxia preconditioning of ADSCs combined with scaffold could better promote urethral reconstruction by upregulating angiogenesis and glycolysis. Hypoxia-preconditioned ADSCs combined with novel scaffold may provide a promising alternative treatment for urethral reconstruction.
Methods
In vitro, paracrine cytokines and secretomes that were secreted by hypoxia- or normoxia-preconditioned ADSCs were added to cultures of human umbilical vein endothelial cells (HUVECs) to measure their functions. In vivo, hypoxia- or normoxia-preconditioned ADSCs were seeded on a porous nanofibrous scaffold for urethral repair on a defect model in rabbits.
Results
The in vitro results showed that hypoxia could enhance the secretion of VEGFA by ADSCs, and hypoxia-preconditioned ADSCs could enhance the viability, proliferation, migration, angiogenesis, and glycolysis of HUVECs (p < 0.05). After silencing VEGFA, angiogenesis and glycolysis were significantly inhibited (p < 0.05). The in vivo results showed that compared to normoxia-preconditioned ADSCs, hypoxia-preconditioned ADSCs combined with scaffolds led to a larger urethral lumen diameter, preserved urethral morphology, and enhanced angiogenesis (p < 0.05). Conclusions: Hypoxia preconditioning of ADSCs combined with scaffold could better promote urethral reconstruction by upregulating angiogenesis and glycolysis. Hypoxia-preconditioned ADSCs combined with novel scaffold may provide a promising alternative treatment for urethral reconstruction.
