The SLCO1A2 gene, encoding human organic anion-transporting polypeptide 1A2, is transactivated by the vitamin D receptor

SLCO1A2 基因编码人类有机阴离子转运多肽 1A2,由维生素 D 受体反式激活

阅读:7
作者:Jyrki J Eloranta, Christian Hiller, Moritz Jüttner, Gerd A Kullak-Ublick

Abstract

Organic anion-transporting polypeptide 1A2 (OATP1A2) (gene symbol, SLCO1A2) mediates cellular uptake of a wide range of endogenous substrates, as well as drugs and xenobiotics. OATP1A2 is expressed in several tissues, including apical membranes of small intestinal epithelial cells. Given its role in intestinal drug absorption, a detailed analysis of the mechanisms that regulate SLCO1A2 gene expression is potentially of great pharmacological relevance. We show here that treatment of human intestine-derived Caco-2 cells with vitamin D(3) markedly increased endogenous OATP1A2 mRNA and protein levels. Suppression of endogenous vitamin D receptor (VDR) expression with siRNAs significantly reduced this induction. Two alternative promoter regions exist in genomic databases for the SLCO1A2 gene. One putative VDR response element (VDRE) that was predicted to interact efficiently with VDR-retinoid X receptor α (RXRα) was identified in silico within SLCO1A2 promoter variant 1. This VDRE served as a strong binding site for the recombinant VDR-RXRα heterodimers in vitro and was potently activated by VDR in the presence of vitamin D(3) in heterologous promoter assays. In reporter assays using native promoter constructs, SLCO1A2 promoter variant 1 was strongly induced by VDR, and site-directed mutagenesis of a single VDRE within this region abolished this activation. Native VDR-RXRα also interacted with this element both in vitro and in living cells. We showed that expression of the SLCO1A2 gene is induced by vitamin D(3) at the transcriptional level through the VDR. Our results suggest that pharmacological administration of vitamin D(3) may allow modulation of intestinal absorption of OATP1A2 transport substrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。