CDKN1C (P57): one of the determinants of human endometrial stromal cell decidualization

CDKN1C (P57):人类子宫内膜基质细胞蜕膜化的决定因素之一

阅读:8
作者:Lan Wang, Hui Yang, Linli Hu, Dan Hu, Shuxia Ma, Xuejiao Sun, Liu Jiang, Jianyuan Song, Licheng Ji, Jackson Ferdinand Masau, Hanwang Zhang, Kun Qian

Abstract

Decidualization is regulated by crosstalk of progesterone and the cAMP pathway. It involves extensive reprogramming of gene expression and includes a wide range of functions. To investigate how cell cycle regulatory genes drive the human endometrial stromal cell (ESC) exit cell cycle and enter differentiation, primary cultured ESC was treated with 8-Br-cAMP and MPA and cell cycle distribution was investigated by flow cytometry. High-throughput cell cycle regulatory gene expression was also studied by microarray. To validate the results of microarray chip, immunohistochemistry and semi-quantitative method of optical density were used to analyze the expression of cell cycle regulator proteins in proliferative phase of endometrium (n = 6) and early pregnancy decidua (n = 6). In addition, we selected cyclin-dependent kinase inhibitor 1c (CDKN1C, also known as P57) and cyclin-dependent kinase inhibitor 2b (CDKN2B, also known as P15) in order to study their role in the process of decidualization by the RNAi method. ESC was arrested at G0/G1 checkpoints during decidualization. Cell cycle regulatory genes P57 and P15 were upregulated, while cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2), and cell division cycle protein 2 homolog (CDC2) were downregulated during ESC differentiation both in vitro and vivo. P57 siRNA impaired ESC decidualization and caused different morphological and ultrastructural changes as well as a relatively low secretion of prolactin, but P15 siRNA had no effects. We concluded that P15, CCND1, CDK2, and CDC2 may participate in ESC withdraw from the cell cycle and go into differentiation both in vitro and in vivo. P57 is one of the key determinants of ESC differentiation due to its effect on the cell cycle distribution, but its association with the decidua-specific transcription factor needs further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。