The nucleolar δ isoform of adapter protein SH2B1 enhances morphological complexity and function of cultured neurons

核仁δ亚型接头蛋白SH2B1增强培养神经元的形态复杂性和功能

阅读:4
作者:Jessica L Cote ,Paul B Vander ,Michael Ellis ,Joel M Cline ,Nadezhda Svezhova ,Michael E Doche ,Travis J Maures ,Tahrim A Choudhury ,Seongbae Kong ,Olivia G J Klaft ,Ray M Joe ,Lawrence S Argetsinger ,Christin Carter-Su

Abstract

The adapter protein SH2B1 is recruited to neurotrophin receptors, including TrkB (also known as NTRK2), the receptor for brain-derived neurotrophic factor (BDNF). Herein, we demonstrate that the four alternatively spliced isoforms of SH2B1 (SH2B1α-SH2B1δ) are important determinants of neuronal architecture and neurotrophin-induced gene expression. Primary hippocampal neurons from Sh2b1-/- [knockout (KO)] mice exhibit decreased neurite complexity and length, and BDNF-induced expression of the synapse-related immediate early genes Egr1 and Arc. Reintroduction of each SH2B1 isoform into KO neurons increases neurite complexity; the brain-specific δ isoform also increases total neurite length. Human obesity-associated variants, when expressed in SH2B1δ, alter neurite complexity, suggesting that a decrease or increase in neurite branching may have deleterious effects that contribute to the severe childhood obesity and neurobehavioral abnormalities associated with these variants. Surprisingly, in contrast to SH2B1α, SH2B1β and SH2B1γ, which localize primarily in the cytoplasm and plasma membrane, SH2B1δ resides primarily in nucleoli. Some SH2B1δ is also present in the plasma membrane and nucleus. Nucleolar localization, driven by two highly basic regions unique to SH2B1δ, is required for SH2B1δ to maximally increase neurite complexity and BDNF-induced expression of Egr1, Arc and FosL1. Keywords: Brain-derived neurotrophic factor; Hippocampal neurons; Immediate early genes; Obesity; Protein isoforms; Signal-transducing adapter proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。