A Synergistic Engineering Approach to Build Human Brain Spheroids

构建人类大脑球体的协同工程方法

阅读:6
作者:Djuna von Maydell, Mehdi Jorfi

Abstract

Self-assembling brain spheroids derived from human stem cells closely emulate the tangled connectivity of the human brain, recapitulate aspects of organized tissue structure, and are relatively easy to manipulate compared to other existing three-dimensional (3D) cellular models. However, current platforms generate heterogeneously sized and short-lived spheroids, which do not robustly and reproducibly model human brain development and diseases. Here, we present a method to generate large-scale arrays of homogeneously sized 3D brain spheroids derived from human-induced pluripotent stem cells (hiPSCs) or immortalized neural progenitor cells to recapitulate Alzheimer's disease (AD) pathology in vitro. When embedded in extracellular matrix, these brain spheroids develop extensive outward projection of neurites and form networks, which are mediated by thick bundles of dendrites. This array facilitates cost-effective, high-throughput drug screening and mechanistic studies to better understand human brain development and neurodegenerative conditions, such as AD .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。