Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs

人类癌症中假定的 DNA/RNA 解旋酶 SLFN11 的表观遗传失活导致对铂类药物的耐药性

阅读:4
作者:Vanesa Nogales, William C Reinhold, Sudhir Varma, Anna Martinez-Cardus, Catia Moutinho, Sebastian Moran, Holger Heyn, Ana Sebio, Agusti Barnadas, Yves Pommier, Manel Esteller

Abstract

Platinum-derived drugs such as cisplatin and carboplatin are among the most commonly used cancer chemotherapy drugs, but very few specific molecular and cellular markers predicting differential sensitivity to these agents in a given tumor type have been clearly identified. Epigenetic gene silencing is increasingly being recognized as a factor conferring distinct tumoral drug sensitivity, so we have used a comprehensive DNA methylation microarray platform to interrogate the widely characterized NCI60 panel of human cancer cell lines with respect to CpG methylation status and cisplatin/carboplatin sensitivity. Using this approach, we have found promoter CpG island hypermethylation-associated silencing of the putative DNA/RNA helicase Schlafen-11 (SLFN11) to be associated with increased resistance to platinum compounds. We have also experimentally validated these findings in vitro. In this setting, we also identified the BRCA1 interacting DHX9 RNA helicase (also known as RHA) as a protein partner for SLFN11, suggesting a mechanistic pathway for the observed chemoresistance effect. Most importantly, we have been able to extend these findings clinically, following the observation that those patients with ovarian and non-small cell lung cancer carrying SLFN11 hypermethylation had a poor response to both cisplatin and carboplatin treatments. Overall, these results identify SLFN11 epigenetic inactivation as a predictor of resistance to platinum drugs in human cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。