RhoA/ROCK Pathway Is Upregulated in Experimental Autoimmune Myocarditis and Is Inhibited by Simvastatin at the Stage of Myosin Light Chain Phosphorylation

RhoA/ROCK 通路在实验性自身免疫性心肌炎中上调且在肌球蛋白轻链磷酸化阶段被辛伐他汀抑制

阅读:6
作者:Monika Skrzypiec-Spring, Maciej Kaczorowski, Alina Rak-Pasikowska, Agnieszka Sapa-Wojciechowska, Krzysztof Kujawa, Agnieszka Żuryń, Iwona Bil-Lula, Agnieszka Hałoń, Adam Szeląg

Abstract

Many studies have proven the involvement of the RhoA/ROCK pathway in autoimmune and cardiovascular diseases and the beneficial effects of its downregulation. Here, we examined whether the effect of simvastatin on experimental autoimmune myocarditis (EAM) may be through targeting the Ras homolog family member A/Rho-associated coiled-coil containing kinases (RhoA/ROCK) pathway and whether previously shown downregulation of metalloproteinase 9 (MMP-9) could be associated with MLC phosphorylation. Two doses of simvastatin were administered to experimental rats with autoimmune myocarditis by gastric gavage for 3 weeks, at the stage of development of the inflammatory process. Immunohistochemical staining for RhoA and ROCK1 was evaluated semi-quantitatively with H-score. The RhoA staining showed no significant differences in expression between the groups, but the ROCK1 expression was significantly upregulated in the hearts of the EAM group and was not downregulated by simvastatin. The Western blotting analysis of the last downstream product of the RhoA/ROCK axis, phosphorylated myosin light chain (phospho-MYL9), revealed that protein content increased in EAM hearts and it was prevented by the highest dose of simvastatin. Our findings suggest that the RhoA/ROCK pathway is upregulated in EAM, and simvastatin in EAM settings inhibits the RhoA/ROCK pathway at the stage of phosphorylation of myosin light chains and provides a new insight into the molecular pathology of autoimmune myocarditis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。