Overexpression of SMYD3 Promotes Autosomal Dominant Polycystic Kidney Disease by Mediating Cell Proliferation and Genome Instability

SMYD3 过度表达通过介导细胞增殖和基因组不稳定性促进常染色体显性多囊肾病

阅读:7
作者:Ewud Agborbesong, Julie Xia Zhou, Hongbing Zhang, Linda Xiaoyan Li, Peter C Harris, James P Calvet, Xiaogang Li

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder worldwide and progresses to end-stage renal disease (ESRD). However, its precise mechanism is not fully understood. In recent years, epigenetic reprogramming has drawn increasing attention regarding its effect on cyst growth. However, considering the complexity of epigenetic mechanisms and the broad range of alterations of epigenetic components in ADPKD, identifying more specific epigenetic factors and understanding how they are mechanistically linked to promote cyst growth is relevant for the development of treatment for ADPKD. Here, we find that the histone methyltransferase SMYD3, which activates gene transcription via histone H3 lysine 4 trimethylation (H3K4me3), is upregulated in PKD1 mutant mouse and human ADPKD kidneys. Genetic knockout of SMYD3 in a PKD1 knockout mouse model delayed cyst growth and improved kidney function compared with PKD1 single knockout mouse kidneys. Immunostaining and Western blot assays indicated that SMYD3 regulated PKD1-associated signaling pathways associated with proliferation, apoptosis, and cell cycle effectors in PKD1 mutant renal epithelial cells and tissues. In addition, we found that SMYD3 localized to the centrosome and regulated mitosis and cytokinesis via methylation of α-tubulin at lysine 40. In addition, SMYD3 regulated primary cilia assembly in PKD1 mutant mouse kidneys. In summary, our results demonstrate that overexpression of SMYD3 contributes to cyst progression and suggests targeting SMYD3 as a potential therapeutic strategy for ADPKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。