The complexity of EGFR exon 19 deletion and L858R mutant cells as assessed by proteomics, transcriptomics, and metabolomics

通过蛋白质组学、转录组学和代谢组学评估 EGFR 外显子 19 缺失和 L858R 突变细胞的复杂性

阅读:6
作者:Nobuaki Ochi, Masami Takeyama, Noriko Miyake, Maki Fuchigami, Hiromichi Yamane, Takuya Fukazawa, Yasunari Nagasaki, Tatsuyuki Kawahara, Hidekazu Nakanishi, Nagio Takigawa

Abstract

Most lung adenocarcinoma-associated EGFR tyrosine kinase mutations are either an exon 19 deletion (19Del) or L858R point mutation in exon 21. Although patients whose tumors contain either of these mutations exhibit increased sensitivity to tyrosine kinase inhibitors, progression-free and overall survival appear to be longer in patients with 19Del than in those with L858R. In mutant-transfected Ba/F3 cells, 19Del and L858R were compared by multi-omics analyses including proteomics, transcriptomics, and metabolomics. Proteome analysis identified increased plastin-2, TKT, PDIA5, and ENO1 expression in L858R cells, and increased EEF1G expression in 19Del cells. RNA sequencing showed significant differences between 19Del and L858R cells in 112 genes. Metabolome analysis showed that amino acids, adenylate, guanylate, NADPH, lactic acid, pyruvic acid glucose 6-phosphate, and ribose 5-phosphate were significantly different between the two mutant cells. Because GSH was increased with L858R, we combined osimertinib with the GSH inhibitor buthionine sulfoximine in L858R cells and observed synergistic effects. The complexity of EGFR 19Del and L858R mutant cells was demonstrated by proteomics, transcriptomics, and metabolomics analyses. Therapeutic strategies for lung cancer with different EGFR mutations could be considered because of their different metabolic phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。