NF-κB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells

肿瘤组织中 NF-κB 的过度激活可使趋化因子微环境发生肿瘤选择性重编程,从而增强细胞毒性 T 效应细胞的募集。

阅读:1
作者:Ravikumar Muthuswamy ,Erik Berk, Beth Fallert Junecko, Herbert J Zeh, Amer H Zureikat, Daniel Normolle, The Minh Luong, Todd A Reinhart, David L Bartlett, Pawel Kalinski

Abstract

Tumor infiltration with effector CD8(+) T cells (T(eff)) predicts longer recurrence-free survival in many types of human cancer, illustrating the broad significance of T(eff) for effective immunosurveillance. Colorectal tumors with reduced accumulation of T(eff) express low levels of T(eff)-attracting chemokines such as CXCL10/IP10 and CCL5/RANTES. In this study, we investigated the feasibility of enhancing tumor production of T(eff)-attracting chemokines as a cancer therapeutic strategy using a tissue explant culture system to analyze chemokine induction in intact tumor tissues. In different tumor explants, we observed highly heterogeneous responses to IFNα or poly-I:C (a TLR3 ligand) when they were applied individually. In contrast, a combination of IFNα and poly-I:C uniformly enhanced the production of CXCL10 and CCL5 in all tumor lesions. Moreover, these effects could be optimized by the further addition of COX inhibitors. Applying this triple combination also uniformly suppressed the production of CCL22/MDC, a chemokine associated with infiltration of T regulatory cells (T(reg)). The T(eff)-enhancing effects of this treatment occurred selectively in tumor tissues, as compared with tissues derived from tumor margins. These effects relied on the increased propensity of tumor-associated cells (mostly fibroblasts and infiltrating inflammatory cells) to hyperactivate NF-κB and produce T(eff)-attracting chemokines in response to treatment, resulting in an enhanced ability of the treated tumors to attract T(eff) cells and reduced ability to attract T(reg) cells. Together, our findings suggest the feasibility of exploiting NF-κB hyperactivation in the tumor microenvironment to selectively enhance T(eff) entry into colon tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。