A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor

星形胶质细胞对脑源性神经营养因子反应的发育阶段和 Kidins220 依赖性转变

阅读:5
作者:Fanny Jaudon, Martina Albini, Stefano Ferroni, Fabio Benfenati, Fabrizia Cesca

Abstract

Astroglial cells are key to maintain nervous system homeostasis. Neurotrophins are known for their pleiotropic effects on neuronal physiology but also exert complex functions to glial cells. Here, we investigated (i) the signaling competence of mouse embryonic and postnatal primary cortical astrocytes exposed to brain-derived neurotrophic factor (BDNF) and, (ii) the role of kinase D-interacting substrate of 220 kDa (Kidins220), a transmembrane scaffold protein that mediates neurotrophin signaling in neurons. We found a shift from a kinase-based response in embryonic cells to a response predominantly relying on intracellular Ca2+ transients [Ca2+]i within postnatal cultures, associated with a decrease in the synthesis of full-length BDNF receptor TrkB, with Kidins220 contributing to the BDNF-activated kinase and [Ca2+]i pathways. Finally, Kidins220 participates in the homeostatic function of astrocytes by controlling the expression of the ATP-sensitive inward rectifier potassium channel 10 (Kir4.1) and the metabolic balance of embryonic astrocytes. Overall, our data contribute to the understanding of the complex role played by astrocytes within the central nervous system, and identify Kidins220 as a novel actor in the increasing number of pathologies characterized by astrocytic dysfunctions. This article has an associated First Person interview with the first authors of the paper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。