Expression of a human variant of CHMP2B linked to neurodegeneration in Drosophila external sensory organs leads to cell fate transformations associated with increased Notch activity

与果蝇外部感觉器官神经退行性病变相关的人类 CHMP2B 变体的表达可导致与 Notch 活性增强相关的细胞命运转变

阅读:5
作者:Caroline Wilson, Joshua Kavaler, Syed Tariq Ahmad

Abstract

Proper function of cell signaling pathways is dependent upon regulated membrane trafficking events that lead to the endocytosis, recycling, and degradation of cell surface receptors. The endosomal complexes required for transport (ESCRT) genes play a critical role in the sorting of ubiquitinated cell surface proteins. CHMP2BIntron5 , a truncated form of a human ESCRT-III protein, was discovered in a Danish family afflicted by a hereditary form of frontotemporal dementia (FTD). Although the mechanism by which the CHMP2B mutation in this family causes FTD is unknown, the resulting protein has been shown to disrupt normal endosomal-lysosomal pathway function and leads to aberrant regulation of signaling pathways. Here we have misexpressed CHMP2BIntron5 in the developing Drosophila external sensory (ES) organ lineage and demonstrate that it is capable of altering cell fates. Each of the cell fate transformations seen is compatible with an increase in Notch signaling. Furthermore, this interpretation is supported by evidence that expression of CHMP2BIntron5 in the notum environment is capable of raising the levels of Notch signaling. As such, these results add to a growing body of evidence that CHMP2BIntron5 can act rapidly to disrupt normal cellular function via the misregulation of critical cell surface receptor function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。