Transferrin receptor regulates malignancies and the stemness of hepatocellular carcinoma-derived cancer stem-like cells by affecting iron accumulation

转铁蛋白受体通过影响铁的积累来调节恶性肿瘤的发生发展以及肝细胞癌来源的癌干细胞样细胞的干性。

阅读:2
作者:Chong Xiao ,Xi Fu ,Yuting Wang ,Hong Liu ,Yifang Jiang ,Ziyi Zhao ,Fengming You

Abstract

Background: Iron metabolism is essential because it plays regulatory roles in various physiological and pathological processes. Disorders of iron metabolism balance are related to various cancers, including hepatocellular carcinoma. Cancer stem-like cells (CSCs) exert critical effects on chemotherapy failure, cancer metastasis, and subsequent disease recurrence and relapse. However, little is known about how iron metabolism affects liver CSCs. Here, we investigated the expression of transferrin receptor 1 (TFR1) and ferroportin (FPN), two iron importers, and an upstream regulator, iron regulatory protein 2 (IRP2), in liver hepatocellular carcinoma (LIHC) and related CSCs. Methods: The expression levels of TFR1, FPN and IRP2 were analysed using the GEPIA database. CSCs were derived from parental LIHC cells cultured in serum-free medium. After TFR1 knockdown, ROS accumulation and malignant behaviours were measured. The CCK-8 assay was performed to detect cell viability after TFR1 knockdown and erastin treatment. Results: TFR1 expression was upregulated in LIHC tissue and CSCs derived from LIHC cell lines, prompting us to investigate the roles of TFR1 in regulating CSCs. Knockdown of TFR1 expression decreased iron accumulation and inhibited malignant behaviour. Knockdown of TFR1 expression decreased reactive oxygen species (ROS) accumulation induced by erastin treatment and maintained mitochondrial function, indicating that TFR1 is critical in regulating erastin-induced cell death in CSCs. Additionally, knockdown of TFR1 expression decreased sphere formation by decreasing iron accumulation in CSCs, indicating a potential role for TFR1 in maintaining stemness. Conclusion: These findings, which revealed TFR1 as a critical regulator of LIHC CSCs in malignant behaviour and stemness that functions by regulating iron accumulation, may have implications to improve therapeutic approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。