Genetic screening and functional analysis of CASP9 mutations in a Chinese cohort with neural tube defects

中国神经管缺陷人群CASP9基因突变的基因筛查和功能分析

阅读:5
作者:Xiao-Zhen Liu, Qin Zhang, Qian Jiang, Bao-Ling Bai, Xiao-Juan Du, Fang Wang, Li-Hua Wu, Xiao-Lin Lu, Yi-Hua Bao, Hui-Li Li, Ting Zhang

Aim

Neural tube defects (NTDs) are birth defects of the nervous system and are the second most frequent cause of birth defects worldwide. The etiology of NTDs is complicated and involves both genetic and environmental factors. CASP9 is an initiator caspase in the intrinsic apoptosis pathway, which in Casp9-/- mice has been shown to result in NTDs because of decreased apoptosis. The aim of this study was to evaluate the potential genetic contribution of the CASP9 gene in human NTDs.

Conclusion

Our findings identify a genetic link for apoptosis in human NTDs and highlight the effect of gene-environment interactions in a complex disease.

Methods

High-throughput sequencing was performed to screen genetic variants of CASP9 genes in 355 NTD cases and 225 matched controls. Apoptosis-relevant assays were performed on transiently transfected E9 neuroepithelial cells or human embryonic kidney 293T cells, to determine the functional characteristics of NTD-specific rare variants under complete or low folic acid (FA) status.

Results

We found significant expression of CASP9 rare variants in NTDs and identified 4 NTD-specific missense variants. Functional assays demonstrated that a p.Y251C variant attenuates apoptosis by reducing CASP9 protein expression and decreasing activity of the intrinsic apoptosis pathway. From this, we conclude that this variant may represent a loss-of-function mutation. A 4-time recurrent p.R191G variant did not affect intrinsic apoptosis in complete medium, while it completely inhibited apoptosis induced by low FA medium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。