Thymosin β10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production

人类 TERT 启动子驱动的胸腺素 β10 表达通过产生 ROS 诱导卵巢癌特异性细胞凋亡

阅读:8
作者:Young-Chae Kim, Byoung-Gie Kim, Je-Ho Lee

Abstract

Thymosin β(10) (Tβ(10)) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ(10) diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ(10), that can overexpress the Tβ(10) gene in cancer cells. This was accomplished by replacing the native Tβ(10) gene promoter with the human TERT promoter in Ad.TERT.Tβ(10). We investigated the cancer suppression activity of Tβ(10) and found that Ad.TERT.Tβ(10) strikingly induced cancer-specific expression of Tβ(10) as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ(10) decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ(10) overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ(10) by Ad.TERT.Tβ(10) could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。