Experimental Characterization and Mathematical Modeling of the Adsorption of Proteins and Cells on Biomimetic Hydroxyapatite

仿生羟基磷灰石对蛋白质和细胞吸附的实验表征与数学建模

阅读:6
作者:Abdul-Raouf Atif, Uǵis La Cis, Håkan Engqvist, Maria Tenje, Shervin Bagheri, Gemma Mestres

Abstract

Biomaterial development is a long process consisting of multiple stages of design and evaluation within the context of both in vitro and in vivo testing. To streamline this process, mathematical and computational modeling displays potential as a tool for rapid biomaterial characterization, enabling the prediction of optimal physicochemical parameters. In this work, a Langmuir isotherm-based model was used to describe protein and cell adhesion on a biomimetic hydroxyapatite surface, both independently and in a one-way coupled system. The results indicated that increased protein surface coverage leads to improved cell adhesion and spread, with maximal protein coverage occurring within 48 h. In addition, the Langmuir model displayed a good fit with the experimental data. Overall, computational modeling is an exciting avenue that may lead to savings in terms of time and cost during the biomaterial development process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。