Wet-Etched Microchamber Array Digital PCR Chip for SARS-CoV-2 Virus and Ultra-Early Stage Lung Cancer Quantitative Detection

用于 SARS-CoV-2 病毒和超早期肺癌定量检测的湿蚀刻微腔阵列数字 PCR 芯片

阅读:8
作者:Yimeng Sun, Yaru Huang, Tong Qi, Qinghui Jin, Chunping Jia, Jianlong Zhao, Shilun Feng, Lijuan Liang

Abstract

We report a novel design of chamber-based digital polymerase chain reaction (cdPCR) chip structure. Using a wet etching process and silicon-glass bonding, the chamber size can be adjusted independently of the process and more feasibly in a normal lab. In addition, the structure of the chip is optimized through hydrodynamic computer simulations to eliminate dead space when the sample is injected into the chip. The samples will be distributed to each separated microchambers for an isolated reaction based on Poisson distribution. Due to the difference in expansion coefficients, isolation of the sample in the microchambers by the oil phase on top ensures homogeneity and independence of the sample in the microchambers. The prepared microarray cdPCR chip enables high-throughput and high-sensitivity quantitative measurement of the SARS-CoV-2 virus gene and the mutant lung cancer gene. We applied the chip for the detection of different concentrations of the mix containing the open reading frame 1ab (ORF1ab) gene, the most specific and conservative gene region of the SARS-CoV-2 virus. In addition to this, we also successfully detected the fluorescence of the epidermal growth factor receptor (EGFR) mutant gene in independent microchambers. At a throughput of 46 200 microchambers, solution mixtures containing both genes were successfully tested quantitatively, with a detection limit of 10 copies/μL. Importantly, the chips are individually inexpensive and easy to industrialize. In addition, the microarray can provide a unified solution for other viral sequences, cancer marker assay development, and point-of-care testing (POCT).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。