Cancer-associated missense mutations enhance the pluripotency reprogramming activity of OCT4 and SOX17

癌症相关错义突变增强了 OCT4 和 SOX17 的多能性重编程活性

阅读:9
作者:Yogesh Srivastava, Daisylyn Senna Tan, Vikas Malik, Mingxi Weng, Asif Javed, Vlad Cojocaru, Guangming Wu, Veeramohan Veerapandian, Lydia W T Cheung, Ralf Jauch

Abstract

The functional consequences of cancer-associated missense mutations are unclear for the majority of proteins. We have previously demonstrated that the activity of SOX and Pit-Oct-Unc (POU) family factors during pluripotency reprogramming can be switched and enhanced with rationally placed point mutations. Here, we interrogated cancer mutation databases and identified recurrently mutated positions at critical structural interfaces of the DNA-binding domains of paralogous SOX and POU family transcription factors. Using the conversion of mouse embryonic fibroblasts to induced pluripotent stem cells as functional readout, we identified several gain-of-function mutations that enhance pluripotency reprogramming by SOX2 and OCT4. Wild-type SOX17 cannot support reprogramming but the recurrent missense mutation SOX17-V118M is capable of inducing pluripotency. Furthermore, SOX17-V118M promotes oncogenic transformation, enhances thermostability and elevates cellular protein levels of SOX17. We conclude that the mutational profile of SOX and POU family factors in cancer can guide the design of high-performance reprogramming factors. Furthermore, we propose cellular reprogramming as a suitable assay to study the functional impact of cancer-associated mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。